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DESCRIPTION OF THE IRREVERSIBLE DEFORMATION

OF SHAPE-MEMORY MATERIALS IN TERMS OF THE

TWO-LEVEL PHENOMENOLOGICAL MODEL

UDC 539.373I. M. Goliboroda, I. V. Kuz’o, and K. N. Rusinko

The two-level phenomenological model of the nonlinear deformation of polycrystals is extended to
describe and predict the irreversible deformation of advanced shape-memory materials. The effect of
various groups of residual microstresses on the deformation process is taken into account. The model
is used to describe and predict deformations of shape-memory materials in cyclic thermomechanical
tests, and its effectiveness is demonstrated.

Key words: martensitic transformation, shape-memory effect, nonlinear deformation, phenomeno-
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Under complex operation conditions, contemporary polycrystalline materials usually exhibit special proper-
ties related to irreversible deformation of defect nature: anomalous behavior of the plastic limit, strain-rate effects,
anomalous creep, etc. Moreover, deformation processes of martensitic nature — reversible martensitic transfor-
mations (MTs) — are observed, and multiaspect interaction of various deformation processes occurs. For these
reasons, the classical theories of the nonlinear deformation of polycrystals fail in many cases. It is therefore of prime
importance to develop generalized theories that would provide an adequate mathematical description of deformation
processes in advanced materials.

Among the various approaches to solving the above-mentioned problem, the slip concept [1] based on the
physically substantiated assumption of the shear nature of microlevel deformation is worth noting. Owing to the
universal nature of this assumption, the model can be applied to various deformation processes. Among the theories
that elaborate and extend this concept is the two-level theory of plasticity [2], which combines the essentials of slip
theory and the concept of flow with a singular loading surface. The constitutive relations of this model are simpler
than those in slip theory and can be extended to deformation phenomena. The main components of the deformation
process in advanced shape-memory materials were generally studied in [3–7]. Among these components are reversible
deformation of martensitic nature, irreversible plastic deformation of defect origin, elastic deformation, and thermal
deformation. The present paper deals with the most complex component of the deformation process for shape-
memory materials — irreversible deformation of defect origin. The interaction of deformation processes of different
natures, including the action of residual microstresses, is taken into account.

In the model proposed, it is assumed that the strain magnitude depends on the displacement of planes in
Ilyushin’s five-dimensional deviatoric space and each plane corresponds to a certain slip system. Following the
concept of [1], we assume that the slip system is a unique system for each distinguished volume that corresponds
to the lower level of the model. Moreover, we assume that separate crystalline elements do not interact, and the
polycrystalline nature of the medium is displayed by different orientations of the distinguished volumes and, hence,
slip systems and corresponding planes in the deviatoric space.
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Fig. 1

The lower-level scale depends on the physical nature of the phenomena studied. In theories of this class, this
dimension is not fixed [8]; the distinguished volume is treated as a representative elementary volume over which
averaging is performed. The representative nature of the distinguished volume implies that its characteristics are
themselves the results of averaging over separate smaller-scale elements: therefore, this volume can be referred to
as a “mesovolume.”

The planes of the deviatoric space move translationally, and the translation magnitude characterizes an
elementary deformation act. In the combined space of stresses and strains, the components of the macrostress and
macrostrain vectors are related to the components of the corresponding deviators by the well-known relations [9]:

ε1 = (
√

3/2)exx, ε2 = (
√

2/2)(eyy − ezz), ε3 =
√

2 exy, ε4 =
√

2 eyz, ε5 =
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2 exz,
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√

3/2)Sxx, S2 = (
√

2/2)(Syy − Szz), S3 =
√

2 Sxy, S4 =
√

2 Syz, S5 =
√

2 Sxz.

If loading occurs in the three-dimensional subspace of the above-mentioned deviatoric space determined by
the components of the vector S1, S2, and S3, the strain is uniquely determined from the translation of the traces
of the planes in the three-dimensional space; the relationship between a plane of the five-dimensional space (with
normal M) and its trace in the three-dimensional subspace (with normal n) is given by the relation Mk = nk cos λ

(k = 1, 2, 3), where λ is the angle between the normals M and n.
The direction cosines of the normal to the plane of three-dimensional subspace are specified in a special

spherical coordinate system related to the loading vector S via the angles α and β: the angle β is the angle between
S and n, and α is the angle between the projection of n onto the plane W normal to S and intersecting the
coordinate origin and the line L of intersection of W with the coordinate plane S1OS2 (Fig. 1). The coordinate
system proposed and its related averaging method allow one to bring the loading vector into coincidence with the
coordinate axis and represent the strain-vector components in finite form for an arbitrary proportional load [2–5].

To describe irreversible strain of defect nature at the lower structural level of the model in a variable
temperature-force field, one can use the formula [10, 11]

dΨ = dϕ−K0(T, S)Ψ dt, (1)

where ϕ is the irreversible-strain intensity, Ψ is the hardening intensity or defect intensity, which is an averaged
continuous characteristic of crystal lattice defects during deformation. The irreversible-strain intensity is an av-
eraged continuous characteristic of the crystal lattice distortion during deformation. In the model in question, it
is determined by the load-induced displacement of the planes relative to the initial location and specified in the
mesovolume with the normal M . The parameter K0 depends on the temperature level and magnitude of the loading
vector, characterizes the rate of time-dependent microstructural processes (primarily, creep), and can characterize
the vacancy concentration for specified loads and temperature [11]. Equation (1) implies that irreversible defor-
mation stimulates the development of structural imperfections of polycrystals, and this process accompanies defect
relaxation. This assumption, in particular, corresponds to the Beil–Orowan hypothesis [12]. Relation (1) can be
used to describe “instantaneous” plastic strain and creep.
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Irreversible deformation of dislocation nature leads to hardening of the material, which is determined by a
change in the distance of the corresponding plane (with the normal M) to the coordinate origin and depends on
the initial deformability of the material (initial strength) and hardening; the latter is determined by the rate of
variation of the applied load. Therefore, we have the relation

HM = F (R,Ψ, RM , IM ), (2)

where HM is the resultant distance to the plane with the normal M . For irreversible deformation, the equality
HM = (S,M) holds. The argument R is the initial (at the onset of irreversible deformation) distance from the
coordinate origin to the loading surface (LS). In accordance with [2], we have R =

√
2/3 σp, where σp(T ) is the

stress that causes irreversible distortions (in extension) dependent on temperature [7]. In this paper, we distinguish
between two notions — the plastic limit and the irreversible-distortion limit. By the plastic limit is meant the stress
at the beginning of distortion under sufficiently intense loading with allowance for rate effects and preceding cyclic
tests.

The next two arguments in formula (2) determine the displacements of the plane with the normal M that
correspond to strain hardening. The second argument (Ψ) accounts for hardening that depends on the applied
temperature and can be eliminated under alternating loading, and the third argument (RM ), which does not
decrease, characterizes the damage to the material [13]. The fourth argument (IM ) specifies additional displacements
that can decrease (relax) with time and correspond to high-rate hardening. In formula (2), the third and fourth
arguments — the relaxing and nonrelaxing parameters — account for the action of residual, so-called orientation
microstresses in the plane with the normal M . At the lower structural level of the model, these stresses can be
produced by various physical factors related to the structural heterogeneity of the material [8]. In particular in shape-
memory materials, they result from incomplete alignment of the crystal lattices of adjacent phases in mechanical
martensitic transformations [14]. Accounting for the stresses capable of relaxation allows one to describe rate effects
(in particular, transient creep). The quantities mentioned above can be found from the relations

dIM = r1 d[(S,M)]− h(T )IM dt, Im ≡ |IM |,

dRM =
{

r2 d[(S,M)], |dRM | > 0,

0, |dRM | < 0,
(3)

where r1, r2 = const.
From the aforesaid, the defect intensity is written as

Ψ = a[(HM/
√

2/3 σp(T ))2 − 1− c1IM − c2RM ], (4)

where a, c1, c2 = const.
Irreversible deformation begins with displacements of the planes tangent to the loading surface. Initially,

the loading surface is a sphere of radius
√

2/3 σp. For further loading, the LS becomes a cone superimposed on a
sphere of radius

√
2/3 σp:

HM =

{ √
2/3 σp(T ), β1 6 β 6 π/2,

S cos β cos λ, 0 6 β 6 β1.

The vertex of the cone coincides with the end of the vector S and its base ( the line of intersection of the
cone and the sphere) is determined by the coordinate angle β1; 0 6 β1 6 π/2; cos β1 =

√
2/3 σp/S; 0 6 λ 6 λ1;

cos λ1 = cos β1/ cos β. During loading, the opposite (rear) side of the LS is also transformed according to the
assumption

Ψ−M = −gΨM ; I−M = −gIM ; R−M = −gRM ; g 6 1.

The parameter σp can be written as

σp =


σp1 = z1Sp, Ms 6 T 6 Mσ

s ,

σp2 = z1K
−1 Mσ

s −Ms

Tml −Mσ
s

(Tml − T ), Mσ
s 6 T 6 Tcon,

σp3 = σp2(Tcon), Tcon 6 T.

(5)
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In formula (5), z1 = const, Ms is the characteristic temperature at the onset of the direct MT [8], Mσ
s is the maximum

temperature at an anomalous dependence of the distortion limit on the temperature occurs (a linear increase in
σi

p with temperature), Mσ
s > Ms, Tcon and Tml are the temperature parameters of the material (Tcon 6 Tml and

Tml does not exceed the melting point of the material), Sp is the characteristic stress at the beginning of the direct
mechanical martensitic transformation for single loading [4–5]; Sp = (T −Ms)/K. Figure 2a shows an experimental
curve of σ versus T (experimental data of [14]), and Fig. 2b shows the qualitative dependence of σ on T that
corresponds to formula (5).

At the macrolevel, the components of the irreversible strain vector of defect nature are given by

εp
k =

∫∫∫
Ω1

dΩ1

∫
t

Mk

(dϕ

ds

)
ds; Ω1 = Ω1(α, β, λ).

The irreversible-strain vector of the boundary of the region where deformation occurs is found form the
condition Ψ = 0.

For high-rate loading regimes, it can be assumed that Eq. (4) is valid only if the irreversible-strain intensity
increases, whereas relation (1) holds during the entire process of variation in the defect intensity (including the
case of no increment in the irreversible strain). In the general case (for an arbitrary loading rate), we assume that
Eq. (1) is valid during the entire testing process. That is, in all cases, the variation in the defect intensity (including
relaxation) is described by relation (1).

Thus, in the model proposed, the deformation process is described by displacement of the corresponding set
of planes of Il’yushin’s five-dimensional deviatoric space.

In this formulation, as before [3–7], the constitutive relations of the model can be reduced to a form similar to
the deformation theory of plasticity. A universal dependence between the shear strain intensity and the tangential
stress intensity was constructed.

Let us consider standard cyclic tests in the mode of [14]: loading to Smax under the program S = Sh+B(t−tj)
(the first stage of the cycle), exposure (usually short-term) at the maximum loading level (second stage), unloading
to the initial level S = Sh (third stage), heating to the temperature T = Tmax, and cooling to the initial temperature
T = Tv (fourth stage). Here and below, tj are the initial and final moments of variation in the applied load and
temperature.

According to (3), the microstresses can be written as RM = R∗
M cos β cos λ and IM = I∗M cos β cos λ. For

an arbitrary lth cycle (l = 0, 1, 2, . . . ), the above-mentioned quantities at the loading stage (j = 4l + 1) for
B1 = Br1/h(T ) have the form

R∗
M = r2(S + l∆S); I∗M = B1[1− exp [−h(T )(t− tj)]Ej ],
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where

∆S = Smax − Sh,

Ej = (−1)HT [4(l+1)]
[ j−1∑

i=1

(−1)[i/2+1] exp [−h(T )(tj − ti)] + (−1)[j/2+1]
]
, E1 = 1,

h(T ) = const, and HT (x = a) is the Heaviside point function.
Under the assumptions made above, the defect intensity, the irreversible-strain intensity, and the components

of the irreversible-strain vector (which increases during the loading stage) are given by

ϕ = Ψ = a[η(j)
1 cos2 β cos2 λ− 1− η

(j)
2 cos β cos λ], (6)

εp
k = πan0

k{η
(j)
1 [ap(x1)cp(x1)−3(x1)4bp(x1)/2]/3− [ap(x1)−(x1)2bp(x1)]−η

(j)
2 [(x2

1 +1/2) arccos x1−3x1ap(x1)/2]}.

Here ap(x) =
√

1− x2, bp(x) = ln |(1 +
√

1− x2 )/x|, cp(x) = 1 + x2/2, η
(j)
1 = 3S2/(2R2), η

(j)
2 = c1I

∗
M + c2R

∗
M ,

R = σp(Tv), and x1 is the root of the quadratic equation η
(j)
1 x2

1 − η
(j)
2 x1 − 1 = 0.

At the second stage of the cycle (exposure at S = Smax), the defect intensity, the irreversible-strain intensity,
and the irreversible strain at the macrolevel are defined similarly to [7]. At the third stage (unloading; we set Sh = 0)
and fourth stage (temperature variations), there is no increment in the irreversible strain and defect relaxation
occurs. Solving (1), we obtain a formula that describes the defect intensity (denoted by Ψ∗) in the period of defect
relaxation:

Ψ∗ = Ψ(t > t4l+3) = [η(2)
1 cos2 β cos2 λ− η

(2)
2 cos β cos λ− 1]e−K0(t−t4l+3). (7)

In this case, the region of defect relaxation remains unchanged with time and corresponds to the region
where Ψ > 0 (i.e., strain hardening occurs) during exposure at the maximum loading level. The quantity Ψ itself
relaxes with time according to (7). Let, now, the next cycle begin at t = tj+1. The defect intensity can increase;
in this case (with incomplete relaxation Ψ∗) it increases from a certain non-negative value to which it relaxed in
the previous cycle rather than from zero. A curve of variation in the defect intensity is shown in Fig. 3. Below, we
denote by Ψa the defect intensity defined by (4). The moment t′ at which irreversible deformation recommences
is determined numerically from the relation Ψa(t′, β = 0, λ = 0) = Ψ∗(t′, β = 0, λ = 0) = 0. For t > t′, the defect
intensity is described by relation (4) and the region of irreversible deformation is given by Ψa(t > t′)−Ψ∗(t′) = 0.

As before, the irreversible strain is determined from (6) for the corresponding values of η
(j)
1 , η

(j)
2 , and η

(j)
3 .

For an arbitrary number of tests, the irreversible strain is determined in a similar manner.
To validate the model, we performed calculations for Fe9%–Cr5%–Ni14%–Mn6%Si alloy specimens subjected

to cyclic thermal and tensile loading according to the above scheme. The loading was varied at a high rate, the
unloading in the cycle was complete (Sh = 0), Tmax = 873 K, and duration of exposure at S = Smax was equal
to zero. Calculation results were compared with the experimental data of [14]. The components of the irreversible
strain of defect nature were determined by the relations given above. The other components of the deformation
process — the reversible martensitic strain, the elastic strain, and the thermal strain — were determined (when
necessary) in accordance with [6, 7].
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Figure 4 gives the irreversible strain of dislocation nature εR versus the number of cycles N (the circles
refer to the experimental data of [14] and the solid curves refer to the calculation result). The inset at the top of
Fig. 4 shows a schematic of the variation in the total nonlinear strain during the cycle, including the relief of the
reversible martensitic strain due to heating and the occurrence of the residual strain εR. The maximum cyclic load
is σmax = 350 MPa, the exposure temperature is Tv = 303 K, and Tmax = 873 K. The calculation and experimental
results agree quantitatively and qualitatively — the increment in the irreversible strain decreases gradually during
the cycle.

Figure 5 shows the dependence of σ on ε from a double-cycle thermomechanical test according to the above-
described program with a maximum load σmax = 290 MPa (first cycle) and 350 MPa (second cycle) and an exposure
temperature Tv = 430 K. Here σ is the load applied during the cycle and ε is the total strain; the dashed curves
refer to the experimental data of [14], and the solid curves refer to calculation results. The experiment shows that,
at elevated exposure temperatures, the irreversible strain of defect nature is the main component of the deformation
process. The martensitic strain is negligible at this exposure temperature. Thus, the theory adequately describes
the deformation behavior of the specimen. The constants of the model were as follows: K = 0.4842105 K/MPa,
a = 4.1 · 10−5, Tcon = 340 K, M ς

s = 340 K, z1 = 1, c1 = 0, c2 = 1.9, and r2 = 0.05 MPa−1.
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Conclusions. Among the various devices and mechanisms involving MTs, one can distinguish the wide class
of so-called thermomechanical devices, in which mechanical work is performed without transforming devices (electric
motors, steam generators, etc.) by converting heat to work, which is a significant advantage [15]. The material of
these devices should meet the following requirements: a high level of the thermomechanical stresses developed, a
high reversible strain and a minimum level of the irreversible strain induced during the MT, cyclic resistance to
deterioration of the thermomechanical characteristics, reasonable cost, possibility of the two-sided shape-memory
effect. Iron-based shape-memory materials meet the above requirements the most fully and, thus, they are a very
important and promising materials with new properties. Owing to their characteristics, these materials can be used
to design various thermomechanical devices.

The model proposed in this paper adequately describes the irreversible strain of dislocation nature for
polycrystals in reversible martensitic transformations under complex thermomechanical test conditions. The model
takes into account the main features of deformation processes of different natures and simultaneous manifestation
of different groups of residual stresses.
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